源码解读——Masonry

Masonry 概述

Masonry 是基于 Apple 的自动布局封装的一个轻量级布局框架。Masonry 通过一种链式的 DSL(Domain-Specific Language)来描述 NSLayoutConstraint。相比原生的自动布局语法,Masonry 提供了更为简便的语法来构造布局。Masonry 同时支持 iOS 和 Mac OS X。

关于原生的自动布局的详细内容,可以阅读另一篇文章——《系统理解 iOS 自动布局》

本文所分析的 Masonry 源码版本是 7.4.2

Auto Layout VS Masonry

苹果提供的自动布局(Auto Layout)能够对视图进行灵活有效的布局。但是,使用原生的自动布局相关的语法创建约束的过程是非常冗长的,可读性也比较差。

如下所示代码,其作用是让一个子视图填充其父视图,其中子视图的每一边相对父视图缩进 10 像素。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
UIView *superview = self.view;

UIView *view1 = [[UIView alloc] init];
view1.translatesAutoresizingMaskIntoConstraints = NO;
view1.backgroundColor = [UIColor greenColor];
[superview addSubview:view1];

UIEdgeInsets padding = UIEdgeInsetsMake(10, 10, 10, 10);

[superview addConstraints:@[

// view1 constraints
[NSLayoutConstraint constraintWithItem:view1
attribute:NSLayoutAttributeTop
relatedBy:NSLayoutRelationEqual
toItem:superview
attribute:NSLayoutAttributeTop
multiplier:1.0
constant:padding.top],

[NSLayoutConstraint constraintWithItem:view1
attribute:NSLayoutAttributeLeft
relatedBy:NSLayoutRelationEqual
toItem:superview
attribute:NSLayoutAttributeLeft
multiplier:1.0
constant:padding.left],

[NSLayoutConstraint constraintWithItem:view1
attribute:NSLayoutAttributeBottom
relatedBy:NSLayoutRelationEqual
toItem:superview
attribute:NSLayoutAttributeBottom
multiplier:1.0
constant:-padding.bottom],

[NSLayoutConstraint constraintWithItem:view1
attribute:NSLayoutAttributeRight
relatedBy:NSLayoutRelationEqual
toItem:superview
attribute:NSLayoutAttributeRight
multiplier:1
constant:-padding.right],

]];
由上可见,使用原生的自动布局语法,对于如此简单的一个布局,也是非常冗长的。如果使用 VFL(Visual Format Language)可以有效减少冗余,但是其 ASCII 类型语法使得编译器无法做类型检查,存在一定的安全隐患。

Masonry 的目标其实就是 为了解决原生自动布局语法冗长的问题。对于上述示例,使用 Masonry 只需要一下几行代码即可解决。

1
2
3
4
5
6
7
8
UIEdgeInsets padding = UIEdgeInsetsMake(10, 10, 10, 10);

[view1 mas_makeConstraints:^(MASConstraintMaker *make) {
make.top.equalTo(superview.mas_top).with.offset(padding.top); //with is an optional semantic filler
make.left.equalTo(superview.mas_left).with.offset(padding.left);
make.bottom.equalTo(superview.mas_bottom).with.offset(-padding.bottom);
make.right.equalTo(superview.mas_right).with.offset(-padding.right);
}];

甚至还可以更加简单:

1
2
3
[view1 mas_makeConstraints:^(MASConstraintMaker *make) {
make.edges.equalTo(superview).with.insets(padding);
}];

Masonry 架构

基本组成

Masonry 主要方法由上述例子就可一窥全貌。Masonry 主要通过对 UIViewNSView)、NSArrayUIViewController 进行分类扩展,从而提供自动布局的构建方法。相关方法定义在上图所示部分文件中:

  • View+MASAddtions
  • NSArray+MASAddtions
  • ViewController+MASAddtions

通过分类提供的自动布局构建方法主要有以下这些:

1
2
3
4
5
6
7
8
9
10
11
// View+MASAddtions
- (NSArray *)mas_makeConstraints:(void(NS_NOESCAPE ^)(MASConstraintMaker *make))block;
- (NSArray *)mas_updateConstraints:(void(NS_NOESCAPE ^)(MASConstraintMaker *make))block;
- (NSArray *)mas_remakeConstraints:(void(NS_NOESCAPE ^)(MASConstraintMaker *make))block;

// NSArray+Addtions
- (NSArray *)mas_makeConstraints:(void (NS_NOESCAPE ^)(MASConstraintMaker *make))block;
- (NSArray *)mas_updateConstraints:(void (NS_NOESCAPE ^)(MASConstraintMaker *make))block;
- (NSArray *)mas_remakeConstraints:(void (NS_NOESCAPE ^)(MASConstraintMaker *make))block;
- (void)mas_distributeViewsAlongAxis:(MASAxisType)axisType withFixedSpacing:(CGFloat)fixedSpacing leadSpacing:(CGFloat)leadSpacing tailSpacing:(CGFloat)tailSpacing;
- (void)mas_distributeViewsAlongAxis:(MASAxisType)axisType withFixedItemLength:(CGFloat)fixedItemLength leadSpacing:(CGFloat)leadSpacing tailSpacing:(CGFloat)tailSpacing;

上述自动布局构建方法均使用一个void(NS_NOESCAPE ^)(MASConstraintMaker *make) 类型的 block 作为参数。的确,MASConstraintMaker 就是 Mansonry 框架中构建布局约束的核心。MASConstraintMaker 引用了 MASConstraint 的一系列方法及其子类(包括:MASCompositeConstraintMASViewConstraint),从而实现约束的创建与添加。

MASConstraint 则提供了一系列返回类型为 MASConstraint 的方法,从而实现了链式 DSL,使 Masonry 具备了简洁灵活的优点。

下面,我们依次来介绍 Masonry 框架中的几个重要类:

  • MASLayoutConstraint
  • MASViewAttribute
  • MASConstraint
  • MAConstraintMaker

MASLayoutConstraint

MASLayoutConstraint 类继承自 NSLayoutConstraint 类。相比其父类,它就多了一个属性 mas_key

MASLayoutConstraint 用来表示 布局约束

MASViewAttribute

我们知道在自动布局系统中,约束的本质是一个方程式:

1
item1.attribute1 = multiplier × item2.attribute2 + constant

MASViewAttribute 就是约束方程式中一个 itemattribute 组成的单元。

如下所示便是 MASViewAttribute 定义的属性。

1
2
3
4
5
6
7
8
9
10
11
12
@interface MASViewAttribute : NSObject

// The view which the reciever relates to. Can be nil if item is not a view.
@property (nonatomic, weak, readonly) MAS_VIEW *view;

// The item which the reciever relates to.
@property (nonatomic, weak, readonly) id item;

// The attribute which the reciever relates to
@property (nonatomic, assign, readonly) NSLayoutAttribute layoutAttribute;

@end
其中,关于 NSLayoutAttribute 枚举所包含的类型,详见 《系统理解 iOS 自动布局》中 约束/约束规则/属性 小节。

MASConstraint

MASConstraint 是一个抽象类,主要为其子类 MASViewConstraintMASCompositeConstraint 声明了一些共有的方法。MASConstraint 为这些共有的方法实现了部分功能,底层的细节实现则由其子类决定。

根据约束方程式的组成,可将这些方法分为以下几类:

  • 属性操作方法(Attribute)
  • 关系操作方法(Relationship)
  • 倍数操作方法(Multiplier)
  • 常量操作方法(Constant)

除此之外,还有优先级操作方法。

属性操作方法

属性操作方法根据对应的 NSLayoutAttribute 枚举类型创建约束属性项。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
- (MASConstraint *)left;
- (MASConstraint *)top;
- (MASConstraint *)right;
- (MASConstraint *)bottom;
- (MASConstraint *)leading;
- (MASConstraint *)trailing;
- (MASConstraint *)width;
- (MASConstraint *)height;
- (MASConstraint *)centerX;
- (MASConstraint *)centerY;
- (MASConstraint *)baseline;

- (MASConstraint *)firstBaseline;
- (MASConstraint *)lastBaseline;

- (MASConstraint *)leftMargin;
- (MASConstraint *)rightMargin;
- (MASConstraint *)topMargin;
- (MASConstraint *)bottomMargin;
- (MASConstraint *)leadingMargin;
- (MASConstraint *)trailingMargin;
- (MASConstraint *)centerXWithinMargins;
- (MASConstraint *)centerYWithinMargins;
这些操作方法内部都是通过一个抽象方法实现,须由子类具体实现,该方法为:
1
- (MASConstraint *)addConstraintWithLayoutAttribute:(NSLayoutAttribute __unused)layoutAttribute

关系操作方法

关系操作方法根据 NSLayoutRelation 枚举类型创建约束关系项。

1
2
3
- (MASConstraint * (^)(id attr))equalTo;
- (MASConstraint * (^)(id attr))greaterThanOrEqualTo;
- (MASConstraint * (^)(id attr))lessThanOrEqualTo;
这些操作方法内部都是通过一个抽象方法实现,须由子类具体实现,该方法为:
1
- (MASConstraint * (^)(id, NSLayoutRelation))equalToWithRelation;

倍数操作方法

两个倍数操作方法都是抽象方法,须由子类具体实现。

1
2
- (MASConstraint * (^)(CGFloat multiplier))multipliedBy;
- (MASConstraint * (^)(CGFloat divider))dividedBy;

常量操作方法

常量操作方法内部各自调用对应的 setter 方法,而这些 setter 方法都是抽象方法,须由子类具体实现。

1
2
3
4
5
6
- (MASConstraint * (^)(MASEdgeInsets insets))insets;
- (MASConstraint * (^)(CGFloat inset))inset;
- (MASConstraint * (^)(CGSize offset))sizeOffset;
- (MASConstraint * (^)(CGPoint offset))centerOffset;
- (MASConstraint * (^)(CGFloat offset))offset;
- (MASConstraint * (^)(NSValue *value))valueOffset;

优先级操作方法

后三个优先级操作方法根据 NSLayoutPriority 枚举类型设置约束优先级,其内部都是通过调用第一个优先级操作方法实现的,该方法为抽象方法,须子类具体实现。

1
2
3
4
- (MASConstraint * (^)(MASLayoutPriority priority))priority;
- (MASConstraint * (^)())priorityLow;
- (MASConstraint * (^)())priorityMedium;
- (MASConstraint * (^)())priorityHigh;

MASViewConstraint

MASViewConstraintMASConstraint 的子类,可以称之为 Masonry 中 最重要的类

MASViewConstraint 除了能够 完整表示约束方程式 之外,还存储了约束的 优先级 属性。我们来看一下其外部属性和内部属性。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// Public
@property (nonatomic, strong, readonly) MASViewAttribute *firstViewAttribute;
@property (nonatomic, strong, readonly) MASViewAttribute *secondViewAttribute;

// Private
@property (nonatomic, strong, readwrite) MASViewAttribute *secondViewAttribute;
@property (nonatomic, weak) MAS_VIEW *installedView; // 约束被添加到的位置(视图)
@property (nonatomic, weak) MASLayoutConstraint *layoutConstraint; // 约束
@property (nonatomic, assign) NSLayoutRelation layoutRelation; // 关系
@property (nonatomic, assign) MASLayoutPriority layoutPriority; // 优先级
@property (nonatomic, assign) CGFloat layoutMultiplier; // 倍数
@property (nonatomic, assign) CGFloat layoutConstant; // 常量
@property (nonatomic, assign) BOOL hasLayoutRelation;
@property (nonatomic, strong) id mas_key;
@property (nonatomic, assign) BOOL useAnimator;

我们再来看一下 MASViewConstraint 实现的父类抽象方法。

首先,属性操作方法所调用的一个抽象方法。

1
2
3
4
5
- (MASConstraint *)addConstraintWithLayoutAttribute:(NSLayoutAttribute)layoutAttribute {
// 必须是没有设置过布局关系,即 hasLayoutRelation 为 NO
NSAssert(!self.hasLayoutRelation, @"Attributes should be chained before defining the constraint relation");
return [self.delegate constraint:self addConstraintWithLayoutAttribute:layoutAttribute];
}
可以看到,MASViewConstraint 其实将该方法的具体实现交给了它的代理。

其次,关系操作方法所调用的一个抽象方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
- (MASConstraint * (^)(id, NSLayoutRelation))equalToWithRelation {
return ^id(id attribute, NSLayoutRelation relation) {
if ([attribute isKindOfClass:NSArray.class]) {
// 必须是没有设置过布局关系,即 hasLayoutRelation 为 NO
NSAssert(!self.hasLayoutRelation, @"Redefinition of constraint relation");
// 如果 attribute 是一组属性,则生成一组约束
NSMutableArray *children = NSMutableArray.new;
for (id attr in attribute) {
MASViewConstraint *viewConstraint = [self copy];
viewConstraint.layoutRelation = relation;
viewConstraint.secondViewAttribute = attr;
[children addObject:viewConstraint];
}
// 将一组约束转换成组合约束,并将代理所持有对应的约束进行替换
MASCompositeConstraint *compositeConstraint = [[MASCompositeConstraint alloc] initWithChildren:children];
compositeConstraint.delegate = self.delegate;
[self.delegate constraint:self shouldBeReplacedWithConstraint:compositeConstraint];
return compositeConstraint;
} else {
NSAssert(!self.hasLayoutRelation || self.layoutRelation == relation && [attribute isKindOfClass:NSValue.class], @"Redefinition of constraint relation");
// 如果 attribute 是单个属性,则设置约束的第二项
self.layoutRelation = relation;
self.secondViewAttribute = attribute;
return self;
}
};
}
可以看到,针对 attribute 的不同,equalToWithRelation 方法实现了不同的逻辑。

接着,倍数操作方法所调用的两个抽象方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
- (MASConstraint * (^)(CGFloat))multipliedBy {
return ^id(CGFloat multiplier) {
NSAssert(!self.hasBeenInstalled,
@"Cannot modify constraint multiplier after it has been installed");
self.layoutMultiplier = multiplier;
return self;
};
}

- (MASConstraint * (^)(CGFloat))dividedBy {
return ^id(CGFloat divider) {
NSAssert(!self.hasBeenInstalled,
@"Cannot modify constraint multiplier after it has been installed");
self.layoutMultiplier = 1.0/divider;
return self;
};
}
可以看到,这两个方法本质上就是修改了 MASViewConstraint 的倍数属性 layoutMultiplier

然后,常量操作方法所调用的几个抽象方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
// 只有约束方程式第一项的属性是:
// NSLayoutAttributeLeft、NSLayoutAttributeLeading、
// NSLayoutAttributeTop、NSLayoutAttributeBottom、
// NSLayoutAttributeRight、NSLayoutAttributeTrailing
// 时,方法才会有效设置常量属性
- (void)setInsets:(MASEdgeInsets)insets {
NSLayoutAttribute layoutAttribute = self.firstViewAttribute.layoutAttribute;
switch (layoutAttribute) {
case NSLayoutAttributeLeft:
case NSLayoutAttributeLeading:
self.layoutConstant = insets.left;
break;
case NSLayoutAttributeTop:
self.layoutConstant = insets.top;
break;
case NSLayoutAttributeBottom:
self.layoutConstant = -insets.bottom;
break;
case NSLayoutAttributeRight:
case NSLayoutAttributeTrailing:
self.layoutConstant = -insets.right;
break;
default:
break;
}
}

// setInsets 的特殊情况
- (void)setInset:(CGFloat)inset {
[self setInsets:(MASEdgeInsets){.top = inset, .left = inset, .bottom = inset, .right = inset}];
}

// 直接设置常量属性
- (void)setOffset:(CGFloat)offset {
self.layoutConstant = offset;
}

// 只有约束方程式第一项的属性是:
// NSLayoutAttributeWidth、NSLayoutAttributeHeight
// 时,方法才会有效设置常量属性
- (void)setSizeOffset:(CGSize)sizeOffset {
NSLayoutAttribute layoutAttribute = self.firstViewAttribute.layoutAttribute;
switch (layoutAttribute) {
case NSLayoutAttributeWidth:
self.layoutConstant = sizeOffset.width;
break;
case NSLayoutAttributeHeight:
self.layoutConstant = sizeOffset.height;
break;
default:
break;
}
}

// 只有约束方程式第一项的属性是:
// NSLayoutAttributeCenterX、NSLayoutAttributeCenterY
// 时,方法才会有效设置常量属性
- (void)setCenterOffset:(CGPoint)centerOffset {
NSLayoutAttribute layoutAttribute = self.firstViewAttribute.layoutAttribute;
switch (layoutAttribute) {
case NSLayoutAttributeCenterX:
self.layoutConstant = centerOffset.x;
break;
case NSLayoutAttributeCenterY:
self.layoutConstant = centerOffset.y;
break;
default:
break;
}
}
可以看到,这些 setter 方法会根据 MASViewConstraint 已有的 firstViewAttribute 约束项的约束属性 layoutAttribuet 的类型来设置常量属性。当属性不匹配值,对常量属性的设置并不会生效。

最后,优先级操作方法的一个抽象方法。

1
2
3
4
5
6
7
8
- (MASConstraint * (^)(MASLayoutPriority))priority {
return ^id(MASLayoutPriority priority) {
NSAssert(!self.hasBeenInstalled,
@"Cannot modify constraint priority after it has been installed");
self.layoutPriority = priority;
return self;
};
}
可以看到,该方法内部直接设置了 MASViewConstraint 的优先级属性 layoutPriority

MASCompositeConstraint

MASCompositeConstraint 也是 MASConstraint 的子类。与 MASViewConstraint 只表示一个约束不同,MASCompositeConstraint 可以表示一组约束。

1
2
3
4
5
6
@interface MASCompositeConstraint () <MASConstraintDelegate>

@property (nonatomic, strong) id mas_key;
@property (nonatomic, strong) NSMutableArray *childConstraints;

@end
其中,childConstraints 属性持有了一组约束。

我们再来看一下 MASCompositeConstraint 实现的父类抽象方法。

首先,属性操作方法所调用的一个抽象方法。

1
2
3
4
- (MASConstraint *)addConstraintWithLayoutAttribute:(NSLayoutAttribute)layoutAttribute {
[self constraint:self addConstraintWithLayoutAttribute:layoutAttribute];
return self;
}
该方法调用了 MASCompositeConstraint 所实现的 MASConstraintDelegate 的一个方法。
1
2
3
4
5
6
7
- (MASConstraint *)constraint:(MASConstraint __unused *)constraint addConstraintWithLayoutAttribute:(NSLayoutAttribute)layoutAttribute {
id<MASConstraintDelegate> strongDelegate = self.delegate;
MASConstraint *newConstraint = [strongDelegate constraint:self addConstraintWithLayoutAttribute:layoutAttribute];
newConstraint.delegate = self;
[self.childConstraints addObject:newConstraint];
return newConstraint;
}
可以看出,该方法内部将通过其代理新创建的普通约束或组合约束添加至 MASCompositeConstraintchildConstraints 数组中,并设置子约束的代理为 MASCompositeConstraint 的代理。

事实上,在 Masonry 中,下文将要提到的 MASConstraintMaker 充当了所有约束的最终代理,如下图所示。MASCompositeConstraint 只是充当了转接和补充的作用。

至于关系操作方法、倍数操作方法、常量操作方法、优先级操作方法所调用的抽象方法。MASCompositeConstraint 对此的实现基本相同,都是对 childConstraints 中的约束进行遍历设置。

MASConstraintMaker

MASConstraintMaker 是 Masonry 的核心。

MASConstraintMaker 指定了构建布局的目标视图以及相关的约束。

1
2
3
4
5
6
@interface MASConstraintMaker () <MASConstraintDelegate>

@property (nonatomic, weak) MAS_VIEW *view;
@property (nonatomic, strong) NSMutableArray *constraints;

@end

MASConstraintMaker 提供了一系列只读的 MASConstraint 属性。这些属性在其 getter 方法内创建了对应 NSLayoutAttribute 枚举类型的约束项。这些属性包括以下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
@property (nonatomic, strong, readonly) MASConstraint *left;
@property (nonatomic, strong, readonly) MASConstraint *top;
@property (nonatomic, strong, readonly) MASConstraint *right;
@property (nonatomic, strong, readonly) MASConstraint *bottom;
@property (nonatomic, strong, readonly) MASConstraint *leading;
@property (nonatomic, strong, readonly) MASConstraint *trailing;
@property (nonatomic, strong, readonly) MASConstraint *width;
@property (nonatomic, strong, readonly) MASConstraint *height;
@property (nonatomic, strong, readonly) MASConstraint *centerX;
@property (nonatomic, strong, readonly) MASConstraint *centerY;
@property (nonatomic, strong, readonly) MASConstraint *baseline;

@property (nonatomic, strong, readonly) MASConstraint *firstBaseline;
@property (nonatomic, strong, readonly) MASConstraint *lastBaseline;

@property (nonatomic, strong, readonly) MASConstraint *leftMargin;
@property (nonatomic, strong, readonly) MASConstraint *rightMargin;
@property (nonatomic, strong, readonly) MASConstraint *topMargin;
@property (nonatomic, strong, readonly) MASConstraint *bottomMargin;
@property (nonatomic, strong, readonly) MASConstraint *leadingMargin;
@property (nonatomic, strong, readonly) MASConstraint *trailingMargin;
@property (nonatomic, strong, readonly) MASConstraint *centerXWithinMargins;
@property (nonatomic, strong, readonly) MASConstraint *centerYWithinMargins;

@property (nonatomic, strong, readonly) MASConstraint *edges;
@property (nonatomic, strong, readonly) MASConstraint *size;
@property (nonatomic, strong, readonly) MASConstraint *center;

@property (nonatomic, strong, readonly) MASConstraint *(^attributes)(MASAttribute attrs);

上面提到,MASViewConstraintMASCompositeConstraint 都会利用其代理来创建并添加约束项,而它们的代理都是 MASConstraintMaker。那么,我们来看一下 MASConstraintMaker 对于 MASConstraintDelegate 的实现是怎么样的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
- (void)constraint:(MASConstraint *)constraint shouldBeReplacedWithConstraint:(MASConstraint *)replacementConstraint {
NSUInteger index = [self.constraints indexOfObject:constraint];
NSAssert(index != NSNotFound, @"Could not find constraint %@", constraint);
[self.constraints replaceObjectAtIndex:index withObject:replacementConstraint];
}

- (MASConstraint *)constraint:(MASConstraint *)constraint addConstraintWithLayoutAttribute:(NSLayoutAttribute)layoutAttribute {
// 根据 约束属性 和 视图 创建一个约束单元
MASViewAttribute *viewAttribute = [[MASViewAttribute alloc] initWithView:self.view layoutAttribute:layoutAttribute];
//创建约束,以约束单元作为约束的第一项
MASViewConstraint *newConstraint = [[MASViewConstraint alloc] initWithFirstViewAttribute:viewAttribute];
if ([constraint isKindOfClass:MASViewConstraint.class]) {
// 如果是在已有约束的基础上再创建的约束,则将它们转换成一个 组合约束,并将原约束替换成该组合约束。
NSArray *children = @[constraint, newConstraint];
MASCompositeConstraint *compositeConstraint = [[MASCompositeConstraint alloc] initWithChildren:children];
compositeConstraint.delegate = self;
[self constraint:constraint shouldBeReplacedWithConstraint:compositeConstraint];
return compositeConstraint;
}
if (!constraint) {
// 如果不是在已有约束的基础上再创建约束,则添加约束至列表
newConstraint.delegate = self;
[self.constraints addObject:newConstraint];
}
return newConstraint;
}

我们先看 constraint:shouldBeReplacedWithConstraint: 方法,该方法的职责非常简单,就是在已有的约束中查找某个约束并进行替换。

我们再看constraint:addConstraintWithLayoutAttribute: 方法,该方法是被调用较多的一个方法,其职责主要就是创建并添加约束至 constraints 列表属性中。

工作流程

在了解了 Masonry 的基本组成之后,我们再通过一个示例来介绍一下 Masonry 的工作流程。

示例如下所示。

1
2
3
4
5
[view mas_makeConstraints::^(MASConstraintMaker *make) {
make.top.equalTo(@10);
make.left.equalTo(superview.mas_left).offset(10);
make.width.height.equalTo(@100);
}];

首先执行分类方法 mas_makeConstraints:

1
2
3
4
5
6
- (NSArray *)mas_makeConstraints:(void(^)(MASConstraintMaker *))block {
self.translatesAutoresizingMaskIntoConstraints = NO;
MASConstraintMaker *constraintMaker = [[MASConstraintMaker alloc] initWithView:self];
block(constraintMaker);
return [constraintMaker install];
}
方法内部先设置 translatesAutoresizingMaskIntoConstraintsNO。因为,Autoresize Mask 和 Auto Layout 是两套布局系统,前者默认可以转换成后者。为了避免前者对自动布局系统产生干扰,这里需要关闭布局转换。

方法内部还会创建一个 MASConstraintMaker 实例,然后以此为参数调用 block 执行。

constraintMaker 创建完约束后,在调用 install 方法将约束添加至正确的约束层级位置。install 方法的内部实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
- (NSArray *)install {
// 只有在 mas_remakeConstraints 时,removeExisting 才为 YES
if (self.removeExisting) {
// 此时,需要先删除所有的约束
NSArray *installedConstraints = [MASViewConstraint installedConstraintsForView:self.view];
for (MASConstraint *constraint in installedConstraints) {
[constraint uninstall];
}
}
// 添加约束
NSArray *constraints = self.constraints.copy;
for (MASConstraint *constraint in constraints) {
// 设置约束的 updateExisting 属性
// 只有在 mas_updateConstraints 时,updateExisting 才为 YES
constraint.updateExisting = self.updateExisting;
[constraint install];
}
// 清空 constraints 数组缓存
[self.constraints removeAllObjects];
return constraints;
}
install 方法内部会对 constraints 列表中的所有约束依次执行各自的 install 方法来添加约束。我们来看一下约束的 install 方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
// MASCompositeConstraint
- (void)install {
for (MASConstraint *constraint in self.childConstraints) {
constraint.updateExisting = self.updateExisting;
[constraint install];
}
}

// MASViewConstraint
- (void)install {
// 约束是否已被添加
if (self.hasBeenInstalled) {
return;
}

// 如果约束支持 isActive 方法,且 self.layoutConstraint 有值了
if ([self supportsActiveProperty] && self.layoutConstraint) {
self.layoutConstraint.active = YES;
[self.firstViewAttribute.view.mas_installedConstraints addObject:self];
return;
}

MAS_VIEW *firstLayoutItem = self.firstViewAttribute.item;
NSLayoutAttribute firstLayoutAttribute = self.firstViewAttribute.layoutAttribute;
MAS_VIEW *secondLayoutItem = self.secondViewAttribute.item;
NSLayoutAttribute secondLayoutAttribute = self.secondViewAttribute.layoutAttribute;

// alignment attributes must have a secondViewAttribute
// therefore we assume that is refering to superview
// eg make.left.equalTo(@10)
if (!self.firstViewAttribute.isSizeAttribute && !self.secondViewAttribute) {
secondLayoutItem = self.firstViewAttribute.view.superview;
secondLayoutAttribute = firstLayoutAttribute;
}

// 生成一个 NSLayoutConstraint
MASLayoutConstraint *layoutConstraint
= [MASLayoutConstraint constraintWithItem:firstLayoutItem
attribute:firstLayoutAttribute
relatedBy:self.layoutRelation
toItem:secondLayoutItem
attribute:secondLayoutAttribute
multiplier:self.layoutMultiplier
constant:self.layoutConstant];
layoutConstraint.priority = self.layoutPriority;
layoutConstraint.mas_key = self.mas_key;

// 确定约束layoutConstraint 的约束层级(即要被添加到的位置)
if (self.secondViewAttribute.view) {
MAS_VIEW *closestCommonSuperview = [self.firstViewAttribute.view mas_closestCommonSuperview:self.secondViewAttribute.view];
NSAssert(closestCommonSuperview,
@"couldn't find a common superview for %@ and %@",
self.firstViewAttribute.view, self.secondViewAttribute.view);
self.installedView = closestCommonSuperview;
} else if (self.firstViewAttribute.isSizeAttribute) {
self.installedView = self.firstViewAttribute.view;
} else {
self.installedView = self.firstViewAttribute.view.superview;
}

MASLayoutConstraint *existingConstraint = nil;
if (self.updateExisting) {
existingConstraint = [self layoutConstraintSimilarTo:layoutConstraint];
}
if (existingConstraint) {
// just update the constant
// 约束存在,则更新constant值
existingConstraint.constant = layoutConstraint.constant;
self.layoutConstraint = existingConstraint;
} else {
// 约束不存在,则在该位置添加约束
[self.installedView addConstraint:layoutConstraint];
self.layoutConstraint = layoutConstraint;
[firstLayoutItem.mas_installedConstraints addObject:self];
}
}
无论是 MASCompositeConstraint 还是 MASViewConstraint,本质上还是调用 MASViewConstraintinstall 方法。该方法根据 MASViewConstraint 的各个属性创建一个原生的约束(NSLayoutConstraint 类型),并在定位约束层级后,将约束添加到相应层级的视图上。

下面,我们再来看看执行 block 又发生了什么。

首先,看一下 make.top.equalTo(@10); 的执行流程。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
// MASConstraintMaker
- (MASConstraint *)top {
return [self addConstraintWithLayoutAttribute:NSLayoutAttributeTop];
}

- (MASConstraint *)addConstraintWithLayoutAttribute:(NSLayoutAttribute)layoutAttribute {
return [self constraint:nil addConstraintWithLayoutAttribute:layoutAttribute];
}

- (MASConstraint *)constraint:(MASConstraint *)constraint addConstraintWithLayoutAttribute:(NSLayoutAttribute)layoutAttribute {
// 根据 约束属性 和 视图 创建一个约束单元
MASViewAttribute *viewAttribute = [[MASViewAttribute alloc] initWithView:self.view layoutAttribute:layoutAttribute];
//创建约束,以约束单元作为约束的第一项
MASViewConstraint *newConstraint = [[MASViewConstraint alloc] initWithFirstViewAttribute:viewAttribute];
if ([constraint isKindOfClass:MASViewConstraint.class]) {
// ...
}
if (!constraint) {
// 如果不是在已有约束的基础上再创建约束,则添加约束至列表
newConstraint.delegate = self; // 注意这一步,会对 make.top.left 这种情形产生关键影响,详见下文
[self.constraints addObject:newConstraint];
}
return newConstraint;
}

// -----------------------------------------------------------------
// 至此,make.top 执行完毕
// -----------------------------------------------------------------

// MASConstraint
- (MASConstraint * (^)(id))equalTo {
return ^id(id attribute) {
// attribute 可能是 @0 类似的值,也可能是 view.mas_width等这样的
return self.equalToWithRelation(attribute, NSLayoutRelationEqual);
};
}

// MASViewConstraint
- (MASConstraint * (^)(id, NSLayoutRelation))equalToWithRelation {
return ^id(id attribute, NSLayoutRelation relation) {
if ([attribute isKindOfClass:NSArray.class]) {
// ...
} else {
NSAssert(!self.hasLayoutRelation || self.layoutRelation == relation && [attribute isKindOfClass:NSValue.class], @"Redefinition of constraint relation");
self.layoutRelation = relation;
self.secondViewAttribute = attribute; // 设置约束第二项
return self;
}
};
}

- (void)setSecondViewAttribute:(id)secondViewAttribute {
if ([secondViewAttribute isKindOfClass:NSValue.class]) {
[self setLayoutConstantWithValue:secondViewAttribute];
} else if ([secondViewAttribute isKindOfClass:MAS_VIEW.class]) {
// _secondViewAttribute = [[MASViewAttribute alloc] initWithView:secondViewAttribute layoutAttribute:self.firstViewAttribute.layoutAttribute];
} else if ([secondViewAttribute isKindOfClass:MASViewAttribute.class]) {
// _secondViewAttribute = secondViewAttribute;
} else {
// NSAssert(NO, @"attempting to add unsupported attribute: %@", secondViewAttribute);
}
}

// MASConstraint
- (void)setLayoutConstantWithValue:(NSValue *)value {
if ([value isKindOfClass:NSNumber.class]) {
self.offset = [(NSNumber *)value doubleValue];
} else if (strcmp(value.objCType, @encode(CGPoint)) == 0) {
// CGPoint point;
// [value getValue:&point];
// self.centerOffset = point;
} else if (strcmp(value.objCType, @encode(CGSize)) == 0) {
// CGSize size;
// [value getValue:&size];
// self.sizeOffset = size;
} else if (strcmp(value.objCType, @encode(MASEdgeInsets)) == 0) {
// MASEdgeInsets insets;
// [value getValue:&insets];
// self.insets = insets;
} else {
// NSAssert(NO, @"attempting to set layout constant with unsupported value: %@", value);
}
}

// MASViewConstraint
- (void)setOffset:(CGFloat)offset {
self.layoutConstant = offset; // 设置约束常量
}

// -----------------------------------------------------------------
// 至此,make.top.equalTo(@10) 执行完毕
// -----------------------------------------------------------------

然后,我们再看 make.left.equalTo(superview.mas_left).offset(10); 的执行流程。 其实,这个执行流程也就是执行 equalTo 内部的 setSecondViewAttribute 时有所不同。另外,offset 方法做了一步额外的操作。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
// MASViewConstraint
- (void)setSecondViewAttribute:(id)secondViewAttribute {
if ([secondViewAttribute isKindOfClass:NSValue.class]) {
// [self setLayoutConstantWithValue:secondViewAttribute];
} else if ([secondViewAttribute isKindOfClass:MAS_VIEW.class]) {
// _secondViewAttribute = [[MASViewAttribute alloc] initWithView:secondViewAttribute layoutAttribute:self.firstViewAttribute.layoutAttribute];
} else if ([secondViewAttribute isKindOfClass:MASViewAttribute.class]) {
_secondViewAttribute = secondViewAttribute;
} else {
// NSAssert(NO, @"attempting to add unsupported attribute: %@", secondViewAttribute);
}
}

// -----------------------------------------------------------------
// 至此,make.left.equalTo(superview.mas_left) 执行完毕
// -----------------------------------------------------------------

// MASConstraint
- (MASConstraint * (^)(CGFloat))offset {
return ^id(CGFloat offset){
self.offset = offset;
return self;
};
}

- (void)setOffset:(CGFloat)offset {
self.layoutConstant = offset;
}

// -----------------------------------------------------------------
// 至此,make.left.equalTo(superview.mas_left).offset(10) 执行完毕
// -----------------------------------------------------------------

最后,我们再看 make.width.height.equalTo(@100); 的执行流程。 其实到 make.width 这一步与前面没有什么差别,再执行 height 时出现了转换。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
// MASConstraint
- (MASConstraint *)height {
return [self addConstraintWithLayoutAttribute:NSLayoutAttributeHeight];
}

// MASViewConstraint
- (MASConstraint *)addConstraintWithLayoutAttribute:(NSLayoutAttribute)layoutAttribute {
NSAssert(!self.hasLayoutRelation, @"Attributes should be chained before defining the constraint relation");
// 见上述 make.top.equalTo(@10) 分析代码中的介绍,此时 self.delegate 早已被设置成了 NSConstraintMaker 了
return [self.delegate constraint:self addConstraintWithLayoutAttribute:layoutAttribute];
}

// MASConstraintMaker
- (MASConstraint *)constraint:(MASConstraint *)constraint addConstraintWithLayoutAttribute:(NSLayoutAttribute)layoutAttribute {
// 根据 约束属性 和 视图 创建一个约束单元
MASViewAttribute *viewAttribute = [[MASViewAttribute alloc] initWithView:self.view layoutAttribute:layoutAttribute];
// 创建约束,以约束单元作为约束的第一项
MASViewConstraint *newConstraint = [[MASViewConstraint alloc] initWithFirstViewAttribute:viewAttribute];
if ([constraint isKindOfClass:MASViewConstraint.class]) {
// 如果是在已有约束的基础上再创建的约束,则将它们转换成一个 组合约束,并将原约束替换成该组合约束。
NSArray *children = @[constraint, newConstraint];
MASCompositeConstraint *compositeConstraint = [[MASCompositeConstraint alloc] initWithChildren:children];
compositeConstraint.delegate = self;
// 这里会将原来 make.width 添加的约束 替换成一个 组合约束(宽度约束 + 高度约束)
[self constraint:constraint shouldBeReplacedWithConstraint:compositeConstraint];
// 返回组合约束
return compositeConstraint;
}
if (!constraint) {
// ...
}
// ...
}

- (void)constraint:(MASConstraint *)constraint shouldBeReplacedWithConstraint:(MASConstraint *)replacementConstraint {
NSUInteger index = [self.constraints indexOfObject:constraint];
NSAssert(index != NSNotFound, @"Could not find constraint %@", constraint);
[self.constraints replaceObjectAtIndex:index withObject:replacementConstraint];
}

// -----------------------------------------------------------------
// 至此,make.width.height 执行完毕
// -----------------------------------------------------------------

// MASConstraint
- (MASConstraint * (^)(id))equalTo {
return ^id(id attribute) {
// attribute 可能是 @0 类似的值,也可能是 view.mas_width等这样的
return self.equalToWithRelation(attribute, NSLayoutRelationEqual);
};
}

// MASCompositeConstraint
- (MASConstraint * (^)(id, NSLayoutRelation))equalToWithRelation {
return ^id(id attr, NSLayoutRelation relation) {
// CompositeConstraint 的 childConstraits 中每一项,调用 equalToWithRelation
for (MASConstraint *constraint in self.childConstraints.copy) {
constraint.equalToWithRelation(attr, relation);
}
return self;
};
}

// -----------------------------------------------------------------
// 至此,make.width.height.equalTo(@100) 执行完毕
// -----------------------------------------------------------------

总结

Masonry 巧妙利用了面向对象的继承、多态思想以及 block 的特性,从而实现了非常简便的链式 DSL,极大地提升了自动布局开发的效率。

参考

  1. Masonry

(完)